Hybrid Intrusion Detection Using Ensemble of Classification Methods
نویسندگان
چکیده
منابع مشابه
Hybrid Intrusion Detection Using Ensemble of Classification Methods
One of the major developments in machine learning in the past decade is the ensemble method, which finds highly accurate classifier by combining many moderately accurate component classifiers. In this research work, new ensemble classification methods are proposed for homogeneous ensemble classifiers using bagging and heterogeneous ensemble classifiers using arcing classifier and their performa...
متن کاملIncremental Hybrid Intrusion Detection Using Ensemble of Weak Classifiers
It is important to increase the detection rate for known intrusions and detect unknown intrusions. It is also important to incrementally learn new unknown intrusions. Most current intrusion detection systems employ either misuse detection or anomaly detection. In order to employ these techniques, we propose incremental hybrid intrusion detection system. This framework combines incremental misus...
متن کاملDesign Hybrid method for intrusion detection using Ensemble cluster classification and SOM network
In current scenario of internet technology security is big challenge. Internet network threats by various cyber-attack and loss the system data and degrade the performance of host computer. In this sense intrusion detection are challenging field of research in concern of network security based on firewall and some rule based detection technique. In this paper we proposed an Ensemble Cluster Cla...
متن کاملImproving Accuracy in Intrusion Detection Systems Using Classifier Ensemble and Clustering
Recently by developing the technology, the number of network-based servicesis increasing, and sensitive information of users is shared through the Internet.Accordingly, large-scale malicious attacks on computer networks could causesevere disruption to network services so cybersecurity turns to a major concern fornetworks. An intrusion detection system (IDS) could be cons...
متن کاملApproach Based Ensemble Methods for Better and Faster Intrusion Detection
This study introduces a new method based on Greedy-Boost, a multiple classifier system, for better and faster intrusion detection. Detection of the anomalies in the data-processing networks is regarded as a problem of data classification allowing to use data mining and machine learning techniques to perform intrusion detection. With such automatic processing procedures, human expertise only foc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Network and Information Security
سال: 2014
ISSN: 2074-9090,2074-9104
DOI: 10.5815/ijcnis.2014.02.07